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Methods
❏ Responses of single units in Inferior Colliculus (IC)  and Primary Auditory Cortex

(AI) in the barbiturate-  or ketamine-anesthetized ferret were recorded with single
tungsten electrodes. Data were collected from 13 ferrets, weighing 1.3 - 2.1 kg. 

❏ Surgery and Preparation: The techniques involved are described in detail in Shamma
et al. (1993). The ferrets were anesthetized with pentobarbital sodium and maintained
in an areflexic state using a continuous IV infusion of pentobarbital or ketamine and
xylazine, diluted with dextrose-electrolyte solution for metabolic stability. Data
collection typically lasted 48-72 hours.

❏ Recording Procedures: Single-unit action potentials were recorded using glass-
insulated tungsten microelectrodes with 5 to 6 MΩ impedance.  The recorded signals
were led through amplifiers and filters. Depending on the paradigm, a stimulus was
presented every few seconds, and raster plots with time resolution of up to 0.1 ms
were produced.

❏ IC was exposed by removal of (visual) cortex, and electrodes were lowered until ICC
was reached, following standard criteria. Poorly defined best frequencies were very
high at first, but went down very quickly as the electrode was lowered, corresponding
to the ICX. When we reached the lowest Best Frequency (BF), corresponding to the
top of the ICC, the responses changed qualitatively, and the BFs were better defined.
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Why the IC?

•  Midway up to Cortex
•  Reports of IC maps and BMFs
•  Observe good temporal responses



Theories of Pitch
Spectral

At minimum, there exists a resolved spectrum No need for resolved spectrum
but must exist temporal properties of the response
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Spectral Resolution & Ripples
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Single Unit
Cluster
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Tuning to ripples based solely on Best Ripple
Frequency indicates that cells’response areas
are too broad to resolve harmonics.

Spectral Tuning to Ripples 
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Spectral Resolution & Ripples II

The modulation of the response to stationary ripples as a function of ripple
phase decreases sharply as the ripple frequency increases, unlike in cortex.
Modulation indicates the ratio of the maximum to the minimum response
to a ripple of a given ripple frequency.



AM Rate Transfer Functions

Langner and Schreiner (1988)

Langner and Schreiner, e.g., find that rate BMFs exhibit bandpass characteristics.



BMFs for AM Transfer Functions
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AM Transfer Function Characteristics

We characterize the AM synchronization transfer function by its peak or
Best Modulation Frequency (BMF), as and upper cut-off,  i.e. the frequency
at which the synchonization coefficient is 50% of the peak value.

We find that the majority of cells have a BMF  around 100 Hz, but with a
range of  cut-off frequencies. 

Synchronization
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Fast Temporal Response II
Raster of responses
to a click train.
Note that clicks’
phases are random
from sweep to sweep
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